
VALIDATION OF AN EXPERIMENTALLY DERIVED

UNCERTAINTY MODEL
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The results show that uncertainty models can be obtained directly from system identi�cation data by using

a minimum norm model validation approach. The error between the test data and an analytical nominal

model is modeled as a combination of unstructured additive and structured input multiplicative uncertainty.

Robust controllers which use the experimentally derived uncertainty model show signi�cant stability and

performance improvements over controllers designed with assumed ad hoc uncertainty levels. Use of the

identi�ed uncertainty model also allowed a strong correlation between design predictions and experimental

results.

1 Introduction

In many engineering problems, a linear, time-invariant
(LTI) and �nite dimensional model, while satisfying
known physical relationships, is still an approximation
of a true plant. The need for robust control is often
due to the corruption of the measurement data by the
secondary e�ects of measurement noise, external dis-
turbances, nonlinearities, and possible time variations.
Although strictly speaking, robust control theory for
nonlinear, time-varying systems should be applied under
the above circumstances, it is currently not available.
However, it has been shown that LTI-based robustness
theory can handle a class of time varying and nonlinear
uncertainties or e�ects via conic sector theory [1, 2, 3].
The hope is that a small set of LTI plants will be su�cient
to describe these secondary e�ects.

A method has been proposed recently [4, 5] for calcu-
lating the smallest norm of the di�erence between the raw
system identi�cation data and the predicted value from a
given nominal model. In particular, this minimum norm
is calculated in closed form (to within a linear matrix
equation) and holds for a general nominal/uncertainty
structure in linear fractional transformation (LFT) form.
Among all model validating plants about the nominal,

�Research Engineer, Guidance & Control Branch, Flight Dy-

namics & Control Division, MS 161, NASA Langley Research Cen-

ter, Hampton, VA 23681, k.b.lim@larc.nasa.gov
yResearch Engineer, Guidance & Control Branch, Flight Dy-

namics & Control Division, MS 161, NASA Langley Research Cen-

ter, Hampton, VA 23681, d.e.cox@larc.nasa.gov
zAssociate Professor, Department of Aerospace Engineering &

Mechanics, 107 Akerman Hall, 110 Union Street S.E., University

of Minnesota, Minneapolis, MN 55455, balas@jette.aem.umn.edu,

Member AIAA
xPrincipal Scientist, Structural Dynamics Branch, Structures

Division, MS 230, NASA Langley Research Center, Hampton, VA

23681, j.juang@larc.nasa.gov, Fellow AIAA

this method de�nes the smallest subset of plants about
the nominal which validates the given experimental
data, hence the name, minimum norm model validation
(MNMV).

This paper is an attempt to demonstrate and vali-
date the MNMV approach for methodically constructing
uncertainty models for a real application. As part of a
validation, the uncertainty weights identi�ed are used in
redesigning the controller and comparing the experimen-
tal closed loop performance to controllers that assume ad
hoc uncertainty levels. The feasibility of the method is
investigated by applying it to the Large Angle Magnetic
Suspension Test Fixture (LAMSTF) [6]. The LAMSTF
is an experimental testbed located at NASA Langley
Research Center for precision pointing control studies
in support of large gap magnetic suspension technology.
The LAMSTF system is open loop unstable, hence sys-
tem uncertainty identi�cation (UID) is performed closed
loop.

An analytical model as derived in [7, 8, 9] is used as
the nominal model in this study although an identi�ed
model can be obtained and used as a nominal model from
the same UID data. In principle, it should not matter
which nominal model to use so long as the set of plants
can be described without stretching the uncertainty size.
Hence, any nominal model provided it is not too far
away from the true unknown system could be used.
For example, an observer based system identi�cation
(ID) technique [10, 11, 12] may be used to construct a
single best nominal model and the residual discrepancies
between the raw system ID data and the nominal model
are bounded by a structured uncertainty connection,
assumed a priori [13, 14]. This would yield a P-� model
for robust control design directly from empirical data.

The paper is organized as follows. Section 2 summa-
rizes the method used in the determination of uncertainty
models by MNMV approach. In Section 3, the LAM-
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STF system is described briey and the experimental
con�guration and UID parameters are described. This
is followed by results from UID experiments. Section
4 describes how a series of controllers are designed,
tested and then compared in terms of stability robustness
and disturbance rejection performance. Conclusions are
given in Section 5.

2 Uncertainty ID Algorithm

The general form of the model structure is given in
Figure 1. Using a bounded, but unknown structured
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Figure 1: A priori model structure of plant in standard
form

uncertainty model, a set of plants are de�ned that
validates the available input-output data which contains
the deviation or scatter about the nominal. The input-
output relationship can be written as

y = Fu(P;�)u+Hw0 (1)

where y, u, and w0, denote the output, input and output
noise. The upper LFT is de�ned by

Fu(P;�) = P22 + P21�(I � P11�)�1P12 (2)

P denotes the augmented plant. The important point
is that if the nominal P22 is known, the rest of the
augmented plant can be constructed from a priori as-
sumptions on the uncertainty structure. Note that H is
the �lter model for the noise and we let the uncertainty,
�, to belong to the set of structured uncertainty D, i.e.,
� 2 D [13].

Let the overall structured uncertainty be de�ned by
the block diagonal matrices

� = diag(�1; . . . ;��); �j 2 Cmj�nj (3)

and the set of all block diagonal and stable, rational
transfer function matrices be given by

D =
�
�(�) 2 RH1 : �j(so) 2 Cmj�nj ; 8so 2 �C+

	
(4)

where � and �C+ denote the number of uncertainty blocks
and the closed right-half plane, respectively [13]. We
consider the class of problems where the uncertainty
connections to the nominal and the plant inputs and
outputs are given. In the next section, these deviations

from a nominal model are used to develop unconservative
frequency dependent structured uncertainty models.

To account for the discrepancies between the avail-
able measured outputs and feedback signals and their
estimates from a nominal model, a priori knowledge of
possible sources of uncertainties in the system are used.
Figure 2 shows how a nominal model, P22 and an un-
certainty connection structure can be used to de�ne the
LFT parameterized set of plants with output noise. The
direct connection between the structured uncertainties,
�, to the output and input mismatch, ey and eu is shown.
These errors are de�ned by
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Figure 2: Con�guration for system UID.
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It is important to note that the above errors are the
residuals that remain after a single best model �t. This
error time history is usually discarded in standard system
ID applications. However, this residual error is precisely
the data used in generating uncertainty models. It is
clear that this error is composed of errors due to model
mismatch and errors due to �ltered noise. Note that the
error expression in the estimated output for closed loop
ID is the same as in the open loop [4].

The algorithm used to identify uncertainty bounds
is given in [4] for open loop and in [5] for the closed
loop case. In both cases, the norm of the smallest
structured uncertainty that validates the available ID
data at each frequency is found, i.e., a minimum norm
model validation.

It is assumed that the controller dynamics, K, is
known and the plant inputs, u 2 Rnu�1, and outputs,
y 2 Rny�1, are measured while the external command,
r 2 Rnr�1 is selected. The �ctitious signals in Figure 2
have dimensions � 2 Cn� and � 2 Cn� where

n� =
�X

j=1

nj; n� =
�X

j=1

mj (6)
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The error in equation 5 is given by

e = eo �R21�(I � R11�)�1M12 (7)

where

R11 = Fl(P;K) (8)

R12 = P12(I �KP22)
�1[I K] (9)

R21 =

�
I

K

�
(I � P22K)�1P21 (10)

R22 =

�
(I � P22K)�1P22 (I � P22K)�1

(I �KP22)�1 (I �KP22)�1K

�
(11)

eo =

�
y

u

�
� R22

�
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~n

�
(12)

M12 = R12

�
r

~n

�
(13)

Note that eo is the residual from nominal �t when � = 0.
De�ne the above residuals at the discrete frequencies


 = (z1; . . . ; zn! ); zj = ej!iT (14)

by taking the discrete Fourier transform of both discrete
time signals and systems.

Under conditions which ensure that a model vali-
dating solution exists, a solution to the MNMV problem
is summarized as follows. A lower bound on the i-th
component uncertainty at frequency zj is given by

��(�i) = k�ik2 �
kyik2
kxik2

(15)

when xi 6= 0, and

x :=M12 + R11(w + �); y := w + � (16)

which are partitioned

x = col
�
x1; . . . ; x�

�
; y = col

�
y1; . . . ; y�

�
(17)

in a conformal manner with respect to � uncertainty
blocks. The word \col" denotes a column vector formed
from its arguments. Let N denote the null space of P21
and � 2 N . It has dimension n� � ny and is spanned by
the last n� � ny columns of V . Let

w = P+

21(I � P22K)eyo (18)

The singular value decomposition is given by

P21 = USV � (19)

where U 2 Cny�ny and V 2 Cn��n� are Hermitian
matrices and S 2 Rny�n� is a full rank diagonal matrix.
The pseudo-inverse is given by

P+

21 = V S+U� (20)

A component uncertainty with this lower bound has been
shown to exist. Thus the minimum norm bound �i for
each uncertainty block can be computed from Eq.(15).
For robust control design, the minimum bounds can
be overbound by a stable, realizable low-order transfer
functions for each uncertainty block.

3 Uncertainty ID of LAMSTF

A detailed description of the LAMSTF facility and the
open-loop dynamic properties of the magnetic suspension
system is given in [7]. Earlier studies on system ID and
control for LAMSTF include [15, 8, 9, 16]. For LAMSTF,
the model uncertainty is due to errors in the linearization
about the equilibrium state, an inaccurate knowledge of
the spatial distribution of the magnetic �eld, errors in the
sensor system hardware, and errors at the plant input due
to induced eddy currents.

3.1 Analytical Model

An analytical model is derived in [7, 8, 9] and reviewed
only briey here. Figure 3 show a schematic of the LAM-
STF system. It basically consists of �ve electromagnets
which actively suspend a small cylindrical permanent
magnet. The cylinder is a rigid body and has �ve
independent degrees of freedom, with motion in the roll
axis being both unobserved and uncontrolled. Reference

b^ 1

n^ 1
n^ 2

n^ 3

b^ 2

b^ 3

x

Figure 3: LAMSTF Con�guration

[8] gives a detailed derivation of both the linear and
nonlinear models. The following provides a synopsis for
the linear model used in the control design.

By de�ning the state vector

� = (!2; !3; �2; �3; v1; v2; v3; x1; x2; x3)
T (21)

the linearized perturbed motion about the equilibrium is
given by

� _� = Â�� + B̂�� (22)

where the detailed expressions for Â and B̂ are given
in [8]. Note that these analytical expressions depend
on many physical constants including a series approxi-
mation of the magnetic �eld distribution. In fact, this
�eld distribution and its frequency dependence due to
eddy currents are believed to be the primary source of
model errors. The variables !i, �i, vi, and xi denotes
ith angular velocity of cylinder with respect to body
frame, ith Euler parameter relative to inertial frame, ith
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Analytic Eigenvalues Degree-of-Freedom
0:00� 0:95i z-axis
0:00� 7:97i x-axis,�y
�9:77 y-axis
�57:80 �z
�58:78 �y ; x-axis

Table 1: Eigenvalues of ten state analytic model

translational velocity and displacement of the centroid
respectively. Six optical sensors detect in plane and out
of plane motion, and provide an over-determined set of
measurements for position in x; y; and z and rotation in
pitch and yaw. The six optical sensors and �ve control
coils yield a fully controllable and observable ten-state
system whose eigenvalues are shown in Table 1.

The system's dynamics are dominated by the unsta-
ble pitch and yaw modes. These modes, called compass
needle modes, result from the magnetic �eld being 180�

out of phase with the cylinder's axial magnetization at
the unstable equilibrium point. For a detailed discussion
of the physical signi�cance of all modes, the interested
reader is referred to [7].

3.2 Uncertainty ID Experiment

The UID input test signal used consists of a frequency
weighted, zero mean, white noise random signal for all
�ve inputs, r (see Figure 2). This was generated by
�ltering a white noise signal with standard deviation of 1
(Ampere) through a fourth order low-pass Butterworth
�lter with break frequency of 60 Hertz. A second random
signal with a bandwidth of 2 Hertz but with a standard
deviation of 5 (Amperes) is added to the �rst wider
bandwidth signal. This second signal is used to alleviate
the lack of power at low frequencies which may result in
a poor model at these low frequencies. The total time
of the excitation signal is 40:96 seconds corresponding to
213 discrete time points at 200 Hertz sampling rate.

Due to the closed loop coupling, the external UID
signal introduced at the plant input is modi�ed ac-
cording to the unknown true input sensitivity transfer
function matrix. Based on a nominal model, the top
plot in Figure 4 show the input sensitivity matrix Tyr =
(I � Fu(P;�)K)�1 while the bottom plot shows the
closed loop transfer function across the plant Tyr =
(I � Fu(P;�)K)�1Fu(P;�). Of course the true plant
denoted by Fu(P;�) is not known so that the best model
before the test is used. Figure 4 also show that the UID
input is attenuated both at the input and output of the
plant at low frequencies. This is due to the inherent
disturbance rejection property of the controller used in
the experiment. Note that the maximum singular value
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Figure 4: Singular values of input sensitivity (top) and
closed-loop transfer function across plant (bottom).

at these low frequencies is an optimistic expectation of
the actual response. The magnitudes of the input and
outputs signals are largest at frequencies near 60 rad/sec.
The output response to the UID signal is attenuated
at higher frequencies. This means that an identi�ed
uncertainty will be limited in accuracy at both low and
high frequencies

3.3 Uncertainty Model

It is known that in the LAMSTF system, there are
several sources of uncertainties which include errors in
the linearization about the equilibrium state, inaccurate
knowledge of the spatial distribution of the magnetic
�eld, errors in the sensor system hardware, and errors
at the plant input due to induced eddy currents. For
example, obtaining accurate analytical models of eddy
currents using recently developed sophisticated computer
code is challenging especially with multiple eddy current
circuits with complex geometries [17].

In this study, we consider a combination of ad-
ditive and structured input multiplicative uncertainty
to describe the deviation of a nominal model. The
reason for choosing this uncertainty structure is to give
a su�cient degree of uncertainty freedom to permit a
model validating solution. Of course in general, the
selection of the uncertainty connections or structure is
still an open issue.

Figure 5 shows the assumed connections for the
uncertainties. The bounds on this structured uncertainty
can then be experimentally determined by the minimum
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Figure 5: Assumed uncertainty structure.

norm model validation method. The P �� connections
are given by

�
�add
�mult

�
=

�
�add 0
0 �mult

��
�add
�mult

�
(23)

8<
:

�add
�mult

y

9=
; = P

8<
:

�add
�mult

u

9=
; (24)

where the structured multiplicative uncertainty is

�mult = diag(�1; . . . ; �5); �i 2 C (25)

The augmented plant for the diagonal multiplicative
uncertainty is

P =

2
4 0 I I

0 0 I

I G G

3
5 (26)

The above variables have the following dimensions:
�add 2 C6�1, �mult 2 C5�1, �add 2 C5�1, �mult 2 C5�1,
�add 2 C6�5, u 2 R5�1, and y 2 R6�1.

The uncertainty bounds are calculated at discrete
frequencies which are linearly spaced. A white noise
signal having a spectral density of 10�6 is assumed for
the presence of measurement noise. Since the number of
uncertainty channels (q = 11) is greater than the number
of outputs (ny = 6), P21 is rectangular and its null space
will be of minimum dimension 5. This means that the
uncertainty bounds can be further reduced if this null
space freedom is utilized. However, this freedom is not
considered in this study.

Figure 6 shows the calculated minimum norm ad-
ditive uncertainty at discrete frequency points over the
whole range of Nyquist frequency. The curve �t was per-
formed interactively using the ��Tool [14] drawmag rou-
tine using a stable, rational, �rst-order transfer function
(solid line). The maximum (dashed line) and minimum
(dash-dot line) singular value response of the nominal
plant are shown for comparison. It is seen that at
frequencies below approximately 7 Hz, the uncertainty is
less than the minimum singular value response indicating
that the additive uncertainty levels are very small while
at higher frequencies (above 7 Hz), the predicted additive
uncertainty e�ect becomes more important. At frequen-
cies beyond 60 Hz, predicted uncertainty is unreliable
because the ID input signal is bandlimited.

10
0

10
1

10
2

10
−2

10
−1

10
0

10
1

Ad
d U

nc
, N

om
ina

l M
od

el

freq (rad/sec)

Figure 6: Additive Uncertainty: Predicted (dot), uncer-
tainty �t (solid), maximum (dash) and minimum (dash-
dot) singular value of nominal model

Figure 7 shows the calculated minimumnormmulti-
plicative uncertainty (dot) and the corresponding second-
order �t (solid line) for each input channel. The multi-
plicative uncertainty levels are generally larger at low
frequencies and roll o� with increasing frequencies.

Input channel number 1 shows largest uncertainty
levels of up to about 90 % but at frequencies near
crossover the uncertainty levels of all input multiplicative
uncertainties are about 10 % or less. However, each
channel appears to have di�erent break frequencies for
the roll o�. For example, channel 1 having larger
uncertainty levels at low frequencies than channel 2 rolls
o� at about 2 Hz as compared to about 10 Hz for channel
2. Note also that these experimentally based uncertainty
predictions are very di�erent when compared to assumed
constant uncertainty levels. The consequence of this
di�erence is evident from experimental results.

4 Performance Validation

The main objective of the control design is to stabilize
the highly unstable open loop equilibrium con�guration.
Subject to closed loop stability, reasonable disturbance
rejection performance across the plant is desired. Of
course the above objectives are complicated by the
presence of model error inaccuracies which are painfully
evident during experiments. Hence, robust disturbance
rejection is sought which requires a de�nition of the
uncertainty set for which the performance is guaranteed.
Uncertainty in the uncertainty model itself is a real
dilemma which motivates this study which is a contin-
uation of an earlier study [9]. Of course now we have the
bene�t of a new tool [4, 5] to more realistically capture
model uncertainty.
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Input Pi Zi ki
1 -7.915 � 12.26i -19.80 � 381.5i 1.127e-03
2 -22.57 � 44.16i -14.92 � 430.2i 1.377e-03
3 -14.89 � 17.74i -15.78 � 420.5i 1.294e-03
4 -13.92 � 19.96i -14.01 � 418.3i 1.243e-03
5 -27.32 � 49.56i -30.91 � 427.1i 1.115e-03

Table 2: Parameters for multiplicative uncertainty �t.

4.1 Controller Design

Figure 8 shows the interconnection used in the design of
H1 and � controllers [13]. The robust performance is
de�ned by the principal gains such that

��
�
Wy(I � Fu(P;�))�1Fu(P;�)

�
� 1; 8! 2 [0;1) (27)

where the set of plants de�ned by the uncertainty,

� = blk� diag(�add;�mult) (28)

�add = �̂addWadd; ��(�̂add) � 1 (29)

�mult = �̂multWmult; ��(�̂mult) � 1: (30)

and the input multiplicative uncertainty has the diagonal
form

�̂mult = diag(�̂1; . . . ; �̂5) (31)

Wmult = diag(wm1; . . . ; wm5) (32)

The additive uncertainties are �tted with the following
�rst-order stable s-domain transfer function

Wadd = 3:7708� 10�3
(s + 3380:7)

(s + 60:615)
I5�5 (33)

The multiplicative uncertainties are �tted with the fol-
lowing second-order stable transfer functions of the form

wmi
= ki

(s + Zi)(s + Z�i )

(s + Pi)(s + P �
i )
; i = 1; . . . ; 5 (34)

and the poles, zeros, and gains of the transfer functions
are given in Table 2. The uncertainty weight for both
additive and multiplicative case are subsequently dis-
cretized using the Tustin approximation of a continuous
�lter. The output performance weight, Wy, is chosen to
be a constant diagonal matrix and equal for all six output
channels.

To validate the experimentally derived uncertainty
model, four sets of � controllers are considered. Table
3 shows the four sets of controllers which were designed
and tested. In all cases, the analytical model is used as
the nominal model. The �rst two sets of controllers are
based on unity output weights while the next two sets
assume much smaller output weights of :1 and :01.

Contr Wunc Wy �des �ID
kyk2
krk2

��(Tyr)

C01 .001 1 .17 5.44 U
C02 .1 1 1.89 2.89 0.29 2.69
C03 .2 1 3.22 3.18 MU
C04 .3 1 4.57 3.48 MU
C11 IDed 1 1.56 1.56 0.19 1.40
C022 .1 .1 1.41 5.63 U
C023 .1 .01 1.25 22.5 U
C12 IDed .1 1.29 5.85 0.42 5.67
C13 IDed .01 1.23 28.5 0.84 26.4

Table 3: � Control laws tested, U=Unstable,
MU=Marginally Unstable.

The �rst set of control designs, C01,C02,C03, and
C04, is based on assumed constant uncertainties at four
di�erent levels :001, :1, :2 and :3, respectively. The
second control design, C11, is based on an identi�ed
uncertainty model and uses the same unity output weight
as the �rst set. A third set of controllers, C022 and C023,
are based on the assumed uncertainty level of :1 which
was used to design controller C02 but with smaller output
weights of :1 and :01 respectively. The fourth and last set
of controllers, C12 and C13, uses the scaled down output
weights with the identi�ed uncertainty weights.

4.2 Performance Comparison

In this subsection, we evaluate the validity of the iden-
ti�ed uncertainty model by comparing predicted robust
stability (RS) and robust performance (RP) to actual
experimental results.

4.2.1 Stability Robustness

In the �rst set of control designs only controller C02,
which assumes uncertainty level of :1, was stable. Con-
troller C01 was violently unstable while controllers C03

and C04 were marginally unstable, i.e., it built up oscil-
lations slowly to eventually go out of range of the sensors.
In contrast, a single control design, C11, which is based
on the identi�ed uncertainty model, was stable and gave
good performance without trial and error.

Based on the set of plants de�ned by the nominal
and identi�ed uncertainty model and the unity output
weight, the predicted RS, nominal performance (NP),
and RP were calculated for all nine controllers resulting
to Figures 9 through 17. By comparing the predicted RS
(solid line), the four controllers that were actually stable,
C11,C12,C13,C02, have the four best predicted RS levels
with respect to the identi�ed uncertainty.

The two marginally unstable controllers, C03,C04,
have slightly worse predicted RS levels than the least
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stable controller, C02 among the four stabilizing con-
trollers. This suggests that the true system uncertainly
level, W o

unc, lies in the narrow margin between C03 (or
C04) and C02, i.e.,

Wunc

�Wunc
([Fl(P;C03)]11)

� W o
unc �

Wunc

�Wunc
([Fl(P;C02)]11)

(35)
The most violently unstable controller, C01, corre-

sponds to the worst RS prediction as shown in solid line
in Figure 9. This controller design practically ignores
RS by assuming Wunc = :001� I10�10. Note that since
stability was attained in the four controllers in spite of a
violation of RS condition (of less than unity) by a factor
of up to 2 at lower frequencies, the identi�ed uncertainty
model is slightly conservative and the RS condition is
only a su�cient condition for true stability. However, a
larger violation of RS condition as in controllers C022,
C023, and C01 (see Figures 14,15, and 9) results in an
unstable closed loop system.

Motivated by the actual stability of controller C02,
controllers C022 and C023 were designed with reduced
output weights which resulted in an improvement in the
predicted RP in terms of �des. If the assumed uncertainty
of :1 is an accurate model, then reducing the output
weight should lead to improved RS. Instead, controllers
C022 and C023 were unstable when implemented. This
instability is however consistent with the predicted degra-
dation of RS when evaluated with the identi�ed uncer-
tainty model as shown in Figures 14 and 15. In stark
contrast, controllers C12 and C13 with reduced output
weight were stable although the disturbance rejection
performance is poor as intended. This low performance
but robust stability for controllers C12 and C13 can be
seen from Figures 16 and 17. Namely, the predicted poor
RP is due to poor disturbance rejection at low frequency
while good RS level is maintained. This means that the
identi�ed uncertainty model used in controllers C11, C12,
and C13, displays a property of an \accurate" uncertainty
model, namely the RS condition should not depend on
the choice of output weight.

4.2.2 Robust Performance

In Table 3, �des denotes the designed � with respect
to the particular uncertainty model (assumed or iden-
ti�ed) and output weights. The value, �ID denotes the
predicted � based on the identi�ed uncertainty model
and the �xed unity output weight. Thus, the di�erences
between �des and �ID values are solely due to the
di�erence in both the uncertainty model assumed and
the output weight. Therefore, �des equals �ID only for
C11.

Recall that a predicted RP is meaningful only with
respect to the performance de�nition and the set of
plants de�ned by the nominal and an uncertainty model.

Clearly, if the set of plants assumed is in question, so
is the reliability of the predicted robust performance.
For instance, �des for controller C01 is the smallest at
:17 (see Table 3) but when implemented, the closed loop
system for this controller resulted in the most unstable
system among the nine controllers tested. On the other
hand, the best RP predicted by �ID is controller C11 at
1:56. When tested, this controller actually gave the best
performance out of the nine controllers.

In order to experimentally validate the RP predic-
tions, a system ID experiment was conducted on the
disturbance to output path of the closed loop system.
Identifying the system in this path allows the calculation
of the worst case response, i.e., the maximum singular
value over all frequencies. A wideband uncorrelated
disturbance input was added to each of the control coils
and measurements recorded from the system's sensors.
This data was used with the OKID algorithm [10] to
generate state-space models of the closed-loop system's
disturbance path, denoted as Tyr. The maximum singu-
lar values were then calculated to obtain the identi�ed
worst case response subject to system ID limitations.
This maximum singular values were directly compared
to the predicted �ID bounds for robust performance.
Figures 18, 19, 20, 21 show these comparisons for all
four stabilizing controllers over all frequencies.

For the controller pair C02 and C11, which have good
RP, the experimental system had worst-case performance
just below the predicted � bound, as shown in Figure 18
and 19. This supports the earlier observations involv-
ing robust stability, namely, the identi�ed uncertainty
model was found to be slightly conservative so that the
predicted � is expected to be above the identi�ed experi-
mental worst case response. The consistency between the
identi�ed experimental worst case response and predicted
worst-case performance (based on identi�ed uncertainty
model) makes a strong case for the \accuracy" of the
uncertainty model. The second pair of controllers, C12

and C13 were dominated by RS constraints (see Figure
16, 17) and had poor predicted RP. However, even in
these cases there is still a remarkable correlation between
the predicted worst case performance, and the maximum
singular values of the identi�ed disturbance path, as
shown in Figures 20 and 21.

The last two columns in Table 3 show the ratio
of signal 2-norms between the wideband white noise

disturbance and the outputs, kyk2
krk2

, and the maximum

singular value of an identi�ed model, Tyr . From Table 3
it can be seen that for all four stabilizing controllers, the
following relation is satis�ed:

kyk2
krk2

� ��(Tyr) � �ID; (36)

The predicted and measured worst case response matches
approximatelywhile they clearly bound a particular ratio
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of signal 2-norms.

5 Conclusions

This study demonstrated the use of a recently proposed
algorithm for determining uncertainty models directly
from system uncertainty identi�cation test data. Over-
all, there was a strong correlation between actual and
predicted robust stability and performance. Because the
LAMSTF testbed is highly unstable in open loop and
is sensitive to model errors, these results represent a
signi�cant experimental demonstration of the identi�ed
uncertainty model and subsequent robust controller per-
formance. Hence we conclude that the results validate
the identi�ed uncertainty model.

Robust control design based on the identi�ed uncer-
tainty model produced signi�cantly better performance
in terms of stability and robust performance. Use of the
identi�ed uncertainty model also signi�cantly improved
predictability. This reduces the need to tweak around
both performance and uncertainty weights in a robust
control design and subsequent application for real sys-
tems to obtain satisfactory performance.

The robust stability and performance results in-
dicate that the identi�ed uncertainty was not overly
conservative. However, the null freedom available for the
su�ciently parameterized uncertainty freedoms, was not
used to reduce the minimum norm uncertainty bound.
Although the experimental results given in this study are
based on a particular structure of uncertainty, namely,
a combined additive and unstructured input multiplica-
tive uncertainties, the system uncertainty identi�cation
methodology applies to the general LFT framework.
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Figure 7: Input Multiplicative Uncertainty: Predicted
(dot), uncertainty �t (solid).
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Figure 8: Interconnection for robust controller design.
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Figure 9: Predicted robust stability (solid), nominal
performance (dash-dot), and robust performance (dash)
for controller C01.
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Figure 10: Predicted robust stability (solid), nominal
performance (dash-dot), and robust performance (dash)
for controller C02.
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Figure 11: Predicted robust stability (solid), nominal
performance (dash-dot), and robust performance (dash)
for controller C03.
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Figure 12: Predicted robust stability (solid), nominal
performance (dash-dot), and robust performance (dash)
for controller C04.
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Figure 13: Predicted robust stability (solid), nominal
performance (dash-dot), and robust performance (dash)
for controller C11.
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Figure 14: Predicted robust stability (solid), nominal
performance (dash-dot), and robust performance (dash)
for controller C022.
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Figure 15: Predicted robust stability (solid), nominal
performance (dash-dot), and robust performance (dash)
for controller C023.
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Figure 16: Predicted robust stability (solid), nominal
performance (dash-dot), and robust performance (dash)
for controller C12.
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Figure 17: Predicted robust stability (solid), nominal
performance (dash-dot), and robust performance (dash)
for controller C13.
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Figure 18: Identi�ed worst case response (solid), pre-
dicted RP (dash) for controller C02.
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Figure 19: Identi�ed worst case response (solid), pre-
dicted RP (dash) for controller C11.
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Figure 20: Identi�ed worst case response (solid), pre-
dicted RP (dash) for controller C12.
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Figure 21: Identi�ed worst case response (solid), pre-
dicted RP (dash) for controller C13.
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